The Role of Assumptions in Latent Variable Model Estimation: Elucidation and Tuning

Karen Bandeen-Roche Department of Biostatistics Johns Hopkins University

Department of Epidemiology and Biostatistics Memorial Sloan-Kettering Cancer Center May 30, 2007

- Observed variables (i=1,...,n): Y_i =M-variate; x_i =P-variate
- Focus: response (Y) distribution = $G_{Y|x}(y|x)$; x-dependence
- Modeling issue: flexible or theory-based? — Flexible: $g_m(E[Y_{im}|x_i]) = f_m(x_i), m=1,...,M$

- Theory-based: > Y_i generated from <u>latent</u> (underlying) U_i : $F_{Y|U,x}(y|U=u,x;\pi)$ (Measurement)

> Focus on distribution, regression re U_i : $F_{U|x}(u|x;\beta)$ (Structural)

> Overall, hierarchical, model:

 $F_{Y|x}(y|x) = \int F_{Y|U,x}(y|U=u,x)dF_{U|x}(u|x)$

Motivation

The Debate over Mixture and Latent Variable Models

- In favor: they
 - acknowledge **measurement problems:** errors, differential reporting
 - summarize multiple measures parsimoniously
 - operationalize **theory**
 - describe population **heterogeneity**
- Against: their
 - modeling assumptions may determine scientific conclusions
 - interpretation may be ambiguous
 - > nature of latent variables?
 - > comparable fit of very different models
 - > seeing is believing

Possible Approaches to the Debate

- Argue advantages of favorite method
- <u>Hybrid approaches</u>:
 - Parallel analyses (e.g. Bandeen-Roche et al. AJE 1999)
 - Marginal mean + LV-based association (e.g. *Heagerty, Biometrics, 2001*)
- Sensitivity analyses
- "Popperian"
 - Pose parsimonious model
 - Learn how it fails to describe the world

Outline

- Modeling and estimation framework
- Specifying the target of estimation

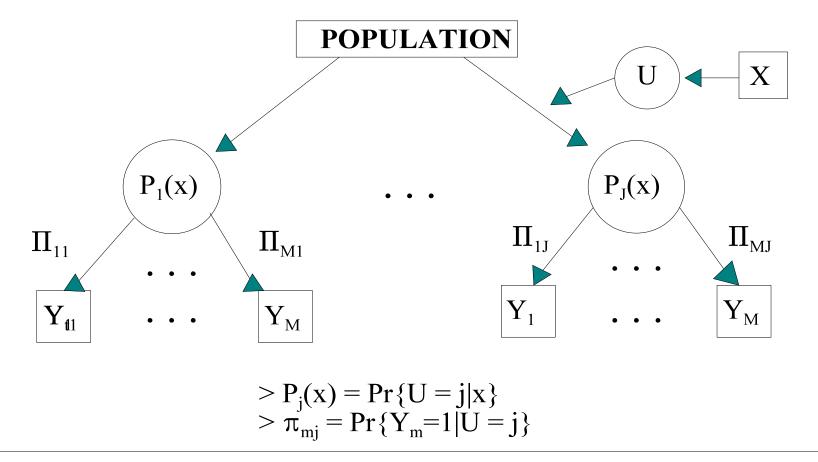
— Supposing that the target uniquely exists ...
> Strategy for delineating it
> Validity of the strategy

— Unique existence of the target

- Application: Post-traumatic Stress Disorder
- Refocusing: Methodology to counterbalance competing assumptions

Application: Post-traumatic Stress Disorder Ascertainment

• PTSD


— Follows a qualifying traumatic event

> This study: <u>personal assault</u>, <u>other personal injury/trauma</u>, <u>trauma to loved one</u>, <u>sudden death of loved one</u> = "x", along with gender

— Criterion endorsement of symptoms related to the event ⇒ diagnosis > Binary report on 17 symptoms = "Y"

- A recent study (Chilcoat & Breslau, Arch Gen Psych, 1998)
 - Telephone interview in metropolitan Detroit
 - n=1827 with a qualifying event
 - Analytic issues
 - > Nosology
 - > Does diagnosis differ by trauma type or gender?
 - > Are female assault victims particularly at risk?

<u>References</u>: Dayton & Macready 1988, van der Heidjen et al., 1996; Bandeen-Roche et al., 1997

Latent Class Regression (LCR) Model

$f_{Y|x}(y|x) = \sum_{j=1}^{J} P_{j}(x,\beta) \prod_{m=1}^{M} \pi_{mj}^{y_{m}} (1-\pi_{mj})^{1-y_{m}}$

- Measurement assumptions : [Y_i|U_i]
 - conditional independence

• Model:

- nondifferential measurement

> reporting heterogeneity unrelated to measured, unmeasured characteristics

- Fitting: ML w EM; robust variance (e.g. Muthén & Muthén 1998, M-Plus)
- *Posterior* latent outcome info: $Pr\{U_i=j|Y_i,x_i;\theta=(\pi,\beta)\}$

Methodology Delineating the Target of Measurement

- Fit an initial model: ML, Bayes, etc.
- Obtain *posterior* latent outcome info e.g. $f_{U|Y,x}(u|Y,x;\theta)$ — This talk: empirical Bayes
- RANDOMLY generate "empirical LVs," V_i , according to $f_{U|Y,x}(u|Y,x;\hat{\theta})$
- Analyze $V_i AS U_i$ (accounting for variability in first-stage estimation)
- Estimate measurement structure through empirical analysis of $Y_i | V_i, x_i$

Methodology Properties "whatever" the True Distribution

• Under Huber (1967)-like conditions:

— <u>Asymptotically</u>:

- > Randomization imposes limiting hierarchical model, except [Y|V,x] arbitrary (and specifiable)
 - i.e. underlying variable distribution has an estimable interpretation even if assumptions are violated
- > No bias in substituting V_i for U_i.
 - i.e. regression of V_i on x_i and model-based LV regression eventually equivalent

Methodology More formal statement

• Under Huber (1967)-like conditions:

 $-(\hat{\beta}, \hat{\pi})$ converge in probability to limits (β^*, π^*) .

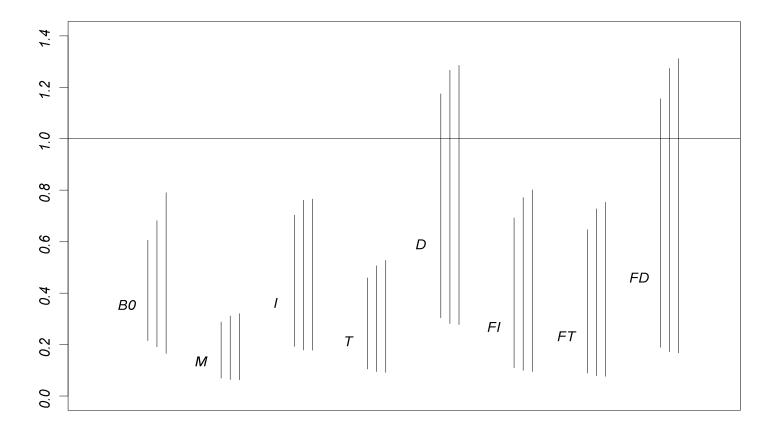
 $-Y_i$ asymptotically equivalent in distribution to Y^* , generated as:

i) Generate U_i^* — distribution determined by (β^*, π^*) , $G_{Y|x}(y|x)$;

ii) Generate Y^{*}—distribution determined by (β^*, π^*) , $G_{Y|x}(y|x)$, U_i^*

- $\{ \Pr[Y_i \le y | V_i, x_i], i=1,2,... \} \text{ converges in distribution to } \\ \{ \Pr[Y_i^* \le y | U_i^*, x_i], i=1,2,... \}, \text{ for each supported } y.$
- V_i converges in distribution to U_i^* .

PTSD Study: Descriptive Statistics


Gender	Trauma Type: percentage distribution				n
	Personal Assault	Other Injury	Trauma to loved one	Sudden death	
Male	14.2	37.7	26.9	21.3	964
Female	14.3	26.3	32.2	27.2	863
Total	14.2	32.3	29.4	24.1	1827

- PTSD symptom criteria met: 11.8% (n=215)
 - By gender:8.3% of men, 15.6% of women— By trauma:assault (26.9%), sudden death (14.8%),
other injury (8.1%), trauma to loved one (6.0%)
 - -<u>Interactions</u>: female x assault (\uparrow), female x other (\downarrow)
 - <u>Criterion issue</u>? 60% reported symptoms short of diagnosis

Latent Class Model for PTSD: 9 items

SYMPTOM	SYMPTOM	SYMPTOM PROBABILITY (π)			
CLASS	(prevalence)		Class 2 - SOME SYMPTOMS	Class 3 - PTSD	
RE-	Recurrent thoughts (.49)	.20	.74	.96	
EXPERIENCE	Distress to event cues (.42)	.12	.68	.88	
	Reactivity to cues (.31)	.05	.51	.77	
AVOIDANCE/	Avoid related thoughts (.28)	.08	.37	.75	
NUMBING	Avoid activities (.24)	.05	.34	.66	
	Detachment (.15)	.01	.14	.64	
INCREASED	Difficulty sleeping (.19)	.02	.18	.78	
AROUSAL	Irritability (.21)	.02	.22	.83	
	Difficulty concentrating (.25)	.03	.30	.89	
MEAN PREVALENCE-BASELINE		.52	.33	.14	

[Omitted: nightmares, flashback; amnesia, *interest*, *iaffect*, short future; hypervigilance, startle]

Odds and Relative Odds, with 95% Confidence Intervals

PTSD: DIAGNOSIS, LCR MEASUREMENT MODEL

• <u>Method</u>: Regress item responses on covariates "controlling" for class — For simplicity: non-assaultive traumas merged into "other trauma"

Variable	Odds Ratio or Interaction Ratio (CI)	By-item Odds Ratio MODEL 2
Female	1.07 (0.93,1.22)	1.07 (0.93,1.22)
Trauma =other than assault (recur.)	3.19 (1.89,5.40)	3.19 (1.89,5.40)
Cue distress x other trauma	0.18 (0.09,0.38)	0.58 (0.36,0.92)
Cue reactivity x other trauma	0.14 (0.07,0.28)	0.44 (0.27,0.72)
Avoid thoughts x other trauma	0.21 (0.11,0.41)	0.68 (0.44,1.05)
Avoid activities x other trauma	0.11 (0.05,0.22)	0.35 (0.21,0.58)
Detachment x other trauma	0.27 (0.13,0.58)	0.88 (0.51,1.49)
Difficulty sleep x other trauma	0.43 (0.21,0.90)	1.37 (0.78,2.42)
Irritability x other trauma	0.28 (0.13,0.61)	0.91 (0.52,1.59)
Concentration x other trauma	0.73 (0.36,1.47)	2.33 (1.35,4.03)

Re-Exper.	1.44
Avoid/Numb	2.36
Arousal	1.59
Different	0.92

Summary PTSD Analysis

- The analysis hypothesizes that PTSD is
 - a syndrome comprising <u>unaffected</u>, <u>subclinically affected</u>, and <u>diseased</u> subpopulations of those suffering traumas

— reported homogeneously within subpopulations

- The hypotheses are consistent with current diagnostic criteria
- <u>Gender x type interactions</u>: are strongly indicated

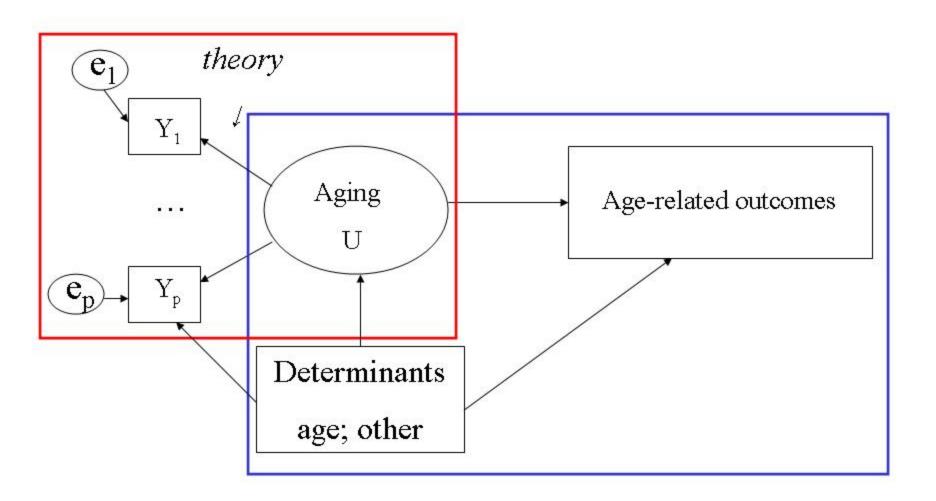
— Female assault victims at particular risk

— ... given the subpopulations defined by the model

Summary PTSD Analysis

• Symptoms appeared differentially sensitive to different traumas

<u>Within classes</u>: those who had a non-assaultive trauma were


- less prone to report <u>distress to cues</u>, <u>reactivity to cues</u>, <u>avoiding</u> <u>thoughts</u>, & <u>avoiding activities</u>
- more prone to report recurrent thoughts & difficulty concentrating
- <u>Concern</u>: Current criteria may better detect psychiatric sequelae to assault than to traumas other than assault

- What I delineated
 - <u>A philosophy</u>
 - > Fit an ideal model
 - > Determine the nature of measurement achieved in fact
 - <u>Theory</u>: On the nature of measurement
 - <u>Methodology</u>: To implement the philosophy
 - <u>New work</u>: On compromise between potentially competing validation criteria
- Strengths / benefits
 - Improved use / usefulness of latent variable models
 - Attention to estimability
 - Allows some distrust of the data

Refocusing of the aim: Measurement

- A well defined target; a less-well-defined operationalization
- We seek measures that have validity for representing their targets
 - LV assumptions encode validity criteria,...
 - ... some better than others
- Objective: Method to unify multiple validation aspects in 1 analysis
 - Balancing potentially conflicting aspects
 - Today's focus: "scale" weighing the balance

Measurement Latent Variable Paradigm

Rationale of the New Work

- Which deserves pre-eminence?
 - Internally validating assumptions?
 - Externally validating assumptions?
 - Some compromise?
- Proposal: Allow compromise via "penalized" fitting

Implementing penalization

- <u>On LCR kernel</u>: Houseman, Coull & Betensky, *BMCS*, 2006
- <u>On LCR mixing distribution</u>: Sheppard Ph.D. thesis
- Key questions
 - Form of the penalty
 - Different purpose than usual?
 - What is the objective function?

Penalization Very brief background

• Fitting: minimize

-2 ln L(
$$\theta$$
;Y,x) + λ g(θ)

- Examples
 - -"Ridge": $g(\theta) = \Sigma_j \theta_j^2$ -"Lasso": $g(\theta) = \Sigma_i |\theta_i|$

Green, Int Stat Rev, 1987; Tibshirani, JRSS-B, 1996

Penalization Very brief background

<u>A useful equivalence</u>: penalized fit obtains via formulating parameters as crossed random effects

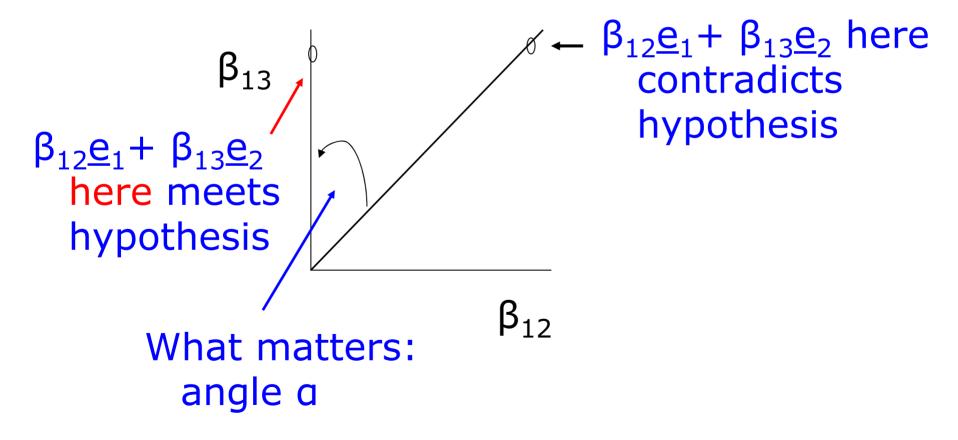
 "Ridge": θ_j ~ N(0,σ{λ}²)
 "Lasso": θ_i ~ double exp(0,h{λ})

Wahba, JRSS-B, 1978; Ngo & Wand, J Stat Software, 2004

Form of the penalty Current case

• Usual purpose: regularization

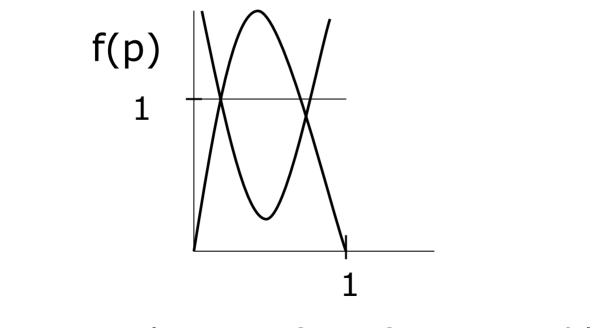
• Here: secondary validation


 <u>Discriminant hypothesis</u>: Genotypes predispose individuals to only one "subtype" of depression

- Say, LCR with one normal class (1) and two disordered classes (2, 3):
- Hypothesis: β_{1j} negligible, and $\beta_{1j'}$ appreciable, in

$$\log\left(\frac{p_k}{p_1}\right) = \beta_{0k} + \beta_{1k} x$$

with $p_k = pr(class k)$; x=genotype indicator; k=2,3; j, j' $\in \{2,3\}$; j \neq j'


• Ridge, lasso not quite right

- Approach 1
 - Consider a \in [0,90] degrees
 - Desired orientations are cos(a)=1, sin(a)=1
 - i.e., goal: minimize cos(a)+sin(a)
 - i.e. minimize

$$\frac{|\beta_{12}|+|\beta_{13}|}{\sqrt{\beta_{12}^2+\beta_{13}^2}}$$

- Approach 2
 - Write $\beta_{12} = p\beta$; $\beta_{13} = (1-p)\beta$
 - Fit with beta random effect on p

– Generalization: $\underline{\beta} = \underline{p}\beta$, $\underline{p} \sim \text{Dirichlet}$

Fitting Approach 2

- E-M algorithm: quite straightforward
- E-step: Computes posterior class membership probabilities given current parameter iterates
- M-step: minimize (e.g. Nelder-Mead)

$$-\sum_{i=1}^{n}\sum_{j=1}^{J}h(j|data)\ln[f_{U|x}(u|x,p,\beta)] + (1-\frac{\Delta}{2})\ln[p(1-p)]$$

Simulation study Three-class model

- 100 reps; single x~Unif(-.5,.5); n=1000
- Poly Log Reg: $\beta_{02} = \beta_{03} = 0$; $\beta_{12} = -1.4$; $\beta_{13} \in \{0, -1.4\}$
- Measurement:

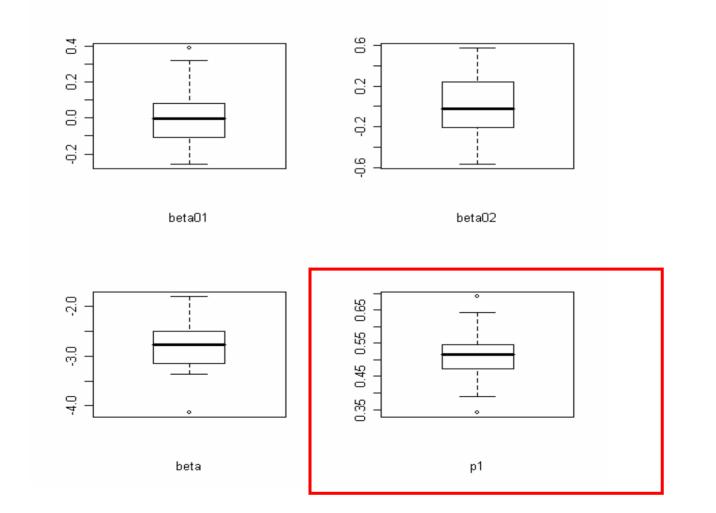
Class 1	Class 2	Class 3
.15	.85	.85
.15	.85	.85
.15	.85	.85
.15	.13	.85
.15	.13	.85

Simulation study Three-class model

- Two assumption scenarios
 –Frank LCR
 - –<u>Differential measurement</u>: First three items have increased log(odds =1) per unit x of 1.4 in class 3

Simulation Study Diff. Meas.; $\beta_{13}=0$; $\beta_{12}=-1.4$

Param.	Penalized		LCR	
	Estimate	SE	Estimate	SE
β ₁₃	-0.04	0.14	-0.54	0.31
β ₁₂	-0.79	0.30	-1.01	0.34


Simulation Study Non-diff meas; $\beta_{13}=0$; $\beta_{12}=-1.4$

Param.	Penalized		LCR	
	Estimate	SE	Estimate	SE
β ₁₃	0	0	0.04	0.32
β ₁₂	-1.42	0.35	-1.41	0.38

Simulation Study Non-diff meas; $\beta_{12} = \beta_{13} = -1.4$

Param.	Penalized		LCR	
	Estimate	SE	Estimate	SE
β ₁₃	-1.45	0.34	-1.45	0.30
β ₁₂	-1.38	0.31	-1.38	0.31

Simulation Study Non-diff meas; $\beta_{12} = \beta_{13} = -1.4$

- <u>A primary issue</u>: Why a hierarchical model at all?
 - PTSD: Why not DSM *Y*, delineate measurement properties?

1) Nosology

a. Central role of cond. independence, non-diff. measurement.b. Guidance in creating, say, three rather than two groups.

2) The quest for the "ideal"

a. Could have turned out that LCR much less subject to NDM, than DSM: i.e. issue with diagnostic criteria rather than items.

b. In fact: LCR and DSM about equally subject to NDM

c. Ultimate recommendation: DSM

- Beyond delineation of assumptions....
- <u>Further Work</u>: Uniqueness of target
 - Delineation of plausible models
 - Displays, complicated models
 - *Implication*: Guidance on parsimony versus complexity
- <u>Further work</u>: Big picture for validation compromise
 - How does measurement conform?
 - How should one determine the magnitude of the compromise?
 Empirical adjudication
 - Clinical / scientific utility
 - o Ultimate: Gold standard (aging: telomeric shortening)
- Why not be Bayesian?

Implications

- Refined understanding of health states and their measurement
 - Integrating biology
 - Increasing sensitivity, specificity
- Heightened accuracy, precision for
 Delineating etiology
 - Developing and targeting interventions

Acknowledgments

• Hopkins Colleagues

Linda Fried, Ron Brookmeyer, Yi Huang, Jeremy Walston, Qian-Li Xue, Scott Zeger

- Colleagues outside of Hopkins Naomi Breslau, Howard Chilcoat, Luigi Ferrucci, Jack Guralnik, Don Ingram, Richard Miller
- Funding / Institutional Support Johns Hopkins Older Americans Independence Center, Alliance for Aging Research, National Institute on Aging, National Institute of Mental Health